Atelier de renforcement des capacités pour la modélisation de l'énergie et du changement d'affectation des terres en Haïti

Capacity Building Workshop for Modeling Energy and Land Use Change in Haiti

Lieu

Dominican Fiesta Hotel & Casino - Santo Domingo

Télécharger le matériel

Il sera disponible tout au long de 2023.

Enregistrement en ligne

La date limite d'inscription est le 20 mars 2023, heure de fermeture des bureaux

#

21-24 mars Santo Domingo




À propos de l'atelier
Le charbon de bois a été accusé d'être à l'origine de la déforestation massive en Haïti, mais des recherches récentes ont remis en question l'impact de la production de charbon de bois sur la perte de forêts. Bien qu'il ne soit pas aussi dramatique que les rapports précédents le prétendaient, le charbon de bois pourrait encore contribuer à la dégradation de l'environnement, en particulier si la demande continue de croître comme certains analystes le prédisent. De même, la dépendance au bois et au charbon de bois nuit à la santé publique et contribue au changement climatique. Des combustibles et des technologies plus propres pour les ménages et les petites entreprises peuvent réduire ces impacts mais peuvent impliquer d'autres compromis. Il est essentiel de disposer d'outils et de méthodes bien conçus pour comprendre comment le bois, le charbon de bois et d'autres sources d'énergie affectent l'occupation des sols, la santé et le climat, afin de concevoir des politiques efficaces. Dans cet atelier de quatre jours, nous présenterons deux outils qui soutiennent l'analyse de l'énergie et du changement d'utilisation des terres dans le contexte haïtien. Les 21 et 22 mars, nous apprendrons à utiliser l'outil LEAP (Low Emissions Analysis Platform) pour mieux comprendre le rôle et l'impact des biocarburants dans la matrice énergétique d'Haïti. Les 23 et 24 mars, nous apprendrons à utiliser l'outil MoFuSS (Modeling Fuelwood Savings Scenarios) et nous effectuerons des exercices pratiques locaux pour évaluer la dégradation causée par le bois de chauffage dans une variété de contextes en Haïti.

Objectif:
Former jusqu'à 15 personnes à l'utilisation de LEAP et MoFuSS dans le contexte haïtien. Les objectifs sous-jacents des simulations sont 1) de mieux comprendre où et quand les combustibles ligneux pourraient être un moteur de la dégradation des forêts et des zones boisées en termes de densité de biomasse aérienne et 2) de servir d'outil de prise de décision, informant les décideurs politiques locaux et les praticiens travaillant sur le terrain.

Résultats et attentes:
Le principal objectif de ce cours est que les participants parviennent à utiliser LEAP et MoFuSS de manière fluide en modifiant les paramètres et en établissant leurs propres scénarios pour n'importe quelle zone d'intérêt en Haïti.

Calendrier du webinaire: LEAP modélisation énergétique

Calendrier du webinaire: MoFuSS modélisation du changement des terres

Ce cours est co-organisé par:

#

Biographies des instructeurs

#

Rob Bailis


Rob est un scientifique principal au Stockholm Environment Institute basé dans leur centre américain. Ses recherches portent sur les relations entre l'énergie, le bien-être social et les changements environnementaux dans les pays en développement. Les recherches actuelles de Rob se concentrent sur les impacts des vecteurs énergétiques traditionnels comme le bois et le charbon de bois et les perspectives de transition vers des carburants et des technologies alternatifs comme les granulés, les biocarburants liquides, le gaz et l’électricité. Son travail sur l'énergie domestique comprend des projets en cours sur la Zambie, le Kenya, le Rwanda et Haïti.

#

Charlie Heaps


Charlie est scientifique principal au sein du programme de recherche sur le climat et l'énergie du SEI.
Il est le concepteur et le gestionnaire de la plate-forme d'analyse des faibles émissions (LEAP) de SEI, un système de modélisation basé sur des scénarios pour la politique énergétique intégrée, l'atténuation du changement climatique et les plans de réduction de la pollution de l'air. LEAP compte des milliers d'utilisateurs dans le monde entier, notamment des agences gouvernementales, des laboratoires nationaux, des établissements universitaires et des organisations non gouvernementales. Charlie a également contribué au développement d'autres outils largement utilisés, notamment les systèmes WEAP, REAP et PoleStar du SEI.
Charlie a travaillé dans plus de 50 pays, animant des ateliers, réalisant des études sur l'énergie et fournissant une formation et une assistance aux utilisateurs de LEAP. Il a consulté de nombreuses agences nationales et internationales, dont l'US-EPA, l'US-AID, l'US-DOE, le PNUE, la CCNUCC, l'ONUDI, la CCNUCC, le PNUD, l'AIEA, l'OLADE, l'APERC et la Banque mondiale. En 2015, Charlie a été l'un des premiers récipiendaires du prix LEDS-Global Partnership Award pour "Leading LEDS Design".

#

Adrian Ghilardi


Adrian Ghilardi a obtenu une licence en biologie de l’Université Nacional de Córdoba (UNC), Argentine et un doctorat en gestion des ressources naturelles de l’Universidad Nacional Autónoma de México (UNAM). Adrián est actuellement professeur associé au Centre de recherche en géographie environnementale de l'UNAM. Ses intérêts généraux sont la sécurité énergétique pour les pauvres et la modélisation spatiale du potentiel des ressources naturelles, en mettant l'accent sur le bois-énergie..

LEAP

Low Emissions Analysis Platform

#

LEAP is a transparent and user-friendly tool for energy and climate mitigation planning that has been adopted by thousands of organizations in nearly 190 countries worldwide, including government agencies, academics, nonprofits, consulting companies and energy utilities. It can be used at a wide range of scales, from cities and states to national, regional and even global applications. At least 37 countries used LEAP to help develop their Nationally Determined Contributions (NDCs) submitted to the UNFCCC’s Paris climate conference in 2015, and LEAP is rapidly becoming the de facto standard for countries undertaking integrated resource planning and greenhouse gas mitigation assessments, especially in the developing world.
LEAP and its associated training materials and documentation are available free of charge to qualified academic, governmental and nonprofit organizations based in the low and middle income countries and to students worldwide. Consulting companies, utilities and other businesses can access LEAP through affordable licensing arrangements.
LEAP is distributed and supported by SEI through the LEAP web site, which has more than 36,000 members worldwide. Along with developing and supporting LEAP, SEI also develops LEAP-based scenario studies, helping policy-makers and planners explore their options to meet future energy needs, mitigate climate change, and shift to a low-carbon development pathway.

MoFuSS

Modeling Fuelwood Savings Scenarios

#

MoFuSS: Modeling Fuelwood Savings Scenarios is a GIS-based open-source freeware developed to evaluate potential impacts of residential firewood use over the landscape. Users have different levels of interaction, from querying available results in a mapserver to uploading their own maps and parameters and ultimately affect underlying geoprocessing operations. MoFuSS is developed and supported by the Environmental Geography Research Center (CIGA) at the National Autonomous University of Mexico (UNAM), in collaboration with the US Center of the Stockholm Environment Institute. The first version of MoFuSS (version 1.0) was developed between September 2011 and April 2015 with funding from Global Alliance for Clean CookstovesYale Institute for Biospheric StudiesOverlook International FoundationClimateWorks and UNAM’s PAPIIT.
We developed MoFuSS with the underlying objective of producing estimates of non-renewable biomass (NRB) at landscape level while allowing users to input the best available data for their area of interest, including project-specific maps and parameters. MoFuSS was developed thinking in a wide range of users from academics and practitioners, to students and NGOs. Used correctly, it should help these stakeholders to: a) get more consistent estimates of fuelwood-related carbon savings within their interest areas, and b) plan sound and cost-effective intervention projects. MoFuSS consists of several “scripts” or list of commands that are executed by freely available computer programs and packages (e.g. DINAMICA EGO, R, FFmpeg, LaTeX, GoogleEarth). Before the course, all scripts will be available for download along with training datasets for Mexico, Central America, Kenya and India (Karnataka). Training datasets vary in size depending on the region and are comprised of spatial raster and vector data and other non-spatial tabular datasets.
MoFuSS is a dynamic model that simulates the effects of fuelwood harvesting on vegetation, accounting for savings in non-renewable woody biomass from reduced consumption due to an external intervention, such as an improved cookstove (ICS) project. Under the assumptions that the demand for fuelwood and its spatial distribution are known, the core questions that the tool addresses are: 1) the quantity of fuelwood harvested at a given location within a specific time frame; 2) the response of vegetation measured by aboveground biomass (AGB) stock and growth rates; 3) changes in harvest and response over time induced by reduced fuelwood demand as a result of ICS adoption or fuel switching. One salient feature of MoFuSS is the modeling of expected land clearing or forest gain events in the near future based on past observations. However, fuelwood extraction and land clearing are the only drivers of wood removals that are modeled. In real cases, vegetation can react differently under the influence of other drivers like extensive grazing or altered fire regimes. Another key feature of MoFuSS is the explicit management of uncertainty. Many parameters such as woody biomass growth are allowed to vary based on probability distributions and measures of dispersion. Including this variability helps users to cope with uncertainty in forest dynamics expected to occur within the study area following different biophysical and management conditions.